

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.350

DETECTION OF POLYMORPHIC MARKERS AND HYBRIDITY CONFIRMATION FOR THE CROSSES DERIVED BETWEEN ELITE CULTIVARS AND WILD INTROGRESSION LINES IN RICE

P. Swetha^{1,2}, V. Venkanna², Divya Balakrishnan^{1*} and Y. Hari²

¹I.C.A.R.-Indian Institute of Rice Research, Hyderabad, Telangana, India ²Regional Agricultural Research Station-P.J.T.A.U., Warangal, Telangana, India *Corresponding author E-mail: dbiirr23@gmail.com (Date of Receiving-05-06-2025; Date of Acceptance-09-08-2025)

The research investigated was undertaken to assess the hybrid authenticity of experimental F, plants derived from crosses between selected wild introgression lines and high-yielding rice cultivars popular in southern India. Crossing of wild introgression lines with elite cultivars includes cross combinations, viz. ADT-51 × C10-21 (DBS-21), C10-21 × Telangana rice-1289 (DBS-23), DRR Dhan 74 × Swarna (DBS-24), and Swarna × NPK-56 (DBS-30). Polymorphism survey using ten microsatellite markers between the parents of all the four crosses revealed that marker RM8004 was found to be polymorphic in all the four cross combinations, followed by RM17377 and RM163 exhibiting polymorphism in three crosses and two crosses **ABSTRACT** respectively and marker RM171 was polymorphic in single cross, while markers RM312, RM3183, RM1, RM178 were monomorphic. Successful hybrid authentication was achieved by employing the most effective polymorphic markers specific to each cross combination, where marker RM17377 validated the hybrid nature of F, plant from DBS21 and DBS30 crosses through detection of paternal bands and heterozygous patterns, while marker RM163 served to authenticate F, plants from DBS23 and DBS24 crosses, collectively confirming true hybridity in 19 out of 20 tested F, individuals by demonstrating the presence of alleles from both parental sources.

Key words: Polymorphic Markers, Rice (Oryza sativa L.), Hybridity

Introduction

Rice (Oryza sativa L.), a key member of the Poaceae family, stands as one of the most essential cereal crops globally, providing a staple food source for billions, particularly across Asia where nearly 90% of its production and consumption occur. As the population in these regions continues to grow rapidly, there is an urgent need to develop high-yielding, climate-resilient rice varieties to meet escalating food demands. In countries like India, achieving a significant increase in rice production by 2025 is critical to ensuring national food security (FAO, 2009). However, the widespread practice of crossing among elite lines of Oryza sativa in current breeding programs has led to a narrowed genetic base, limiting genetic variation and hampering the development of superior recombinants (Tanksley and McCouch, 1997),

reduced variability has contributed to a plateau in yield improvement, highlighting the necessity of broadening the genetic pool through pre-breeding and strategic hybridization efforts.

Wild relatives of cultivated rice, particularly from the genus Oryza, offer a rich reservoir of genetic diversity and harbor valuable traits for crop improvement. Historic breeding successes, such as the transfer of grassy stunt virus resistance from Oryza nivara to cultivated rice (Khush et al., 1977), have demonstrated the potential of wild species to enhance biotic and abiotic stress tolerance, as well as yield-related traits. To leverage these advantages, wild introgression lines are now increasingly used in hybridization programs. In the context of breeding, assessing polymorphism is crucial for identifying true hybrids and confirming genetic diversity. It also aids in

2458 P. Swetha *et al.*

Table 1:	Parental polymorphism analysis using SSR Markers
	in Rice crosses.

CROSS	Female	Male	Polymorphic Markers	
DDC 21	ADT-51	C10-21	RM17377, RM171,	
DBS-21			RM8004	
DDC 22	C10-21	Telangana	RM163, RM17377,	
DBS-23		rice-1289	RM8004	
DBS-24	DRR	Swarna	RM163, RM8004	
DDS-24	Dhan 74	Swariia	KIVI103, KIVI8004	
DBS-30	Swarna	NPK-56	RM17377, RM8004	

understanding trait inheritance and selecting desirable traits for crop improvement. (Pranay et al., 2024) The conventional method of identification of true F₁ s based on morphological traits was quite successful, but is timeconsuming as involves a complete crop season for phenotypic comparison of progeny with the parents, also influenced by the environment and based on existence of observable morphological variations among the parents. Molecular markers, especially microsatellites or Simple Sequence Repeats (SSRs), have revolutionized this process by offering precise, environment-independent tools for genotypic characterization even at seedling stage. SSRs are particularly valuable due to their co-dominant nature, genome-wide distribution, cost-effectiveness, and reproducibility (Mason 2015). In this study, F, plants were developed by crossing high-yielding varieties with wild introgression lines, and their hybridity was evaluated using SSR markers. This molecular approach ensures accurate identification of true hybrids, facilitating efficient advancement to segregating generations and supporting the development of improved rice varieties.

Materials and Methods

Plant Material and Cross Development

The experimental material comprised six genetically diverse parental lines sourced from various rice research institutions across India. High-yielding regional cultivars included Swarna (Agricultural Research Station, Maruteru, Andhra Pradesh), ADT-51 (Tamil Nadu Rice Research Institute, Aduthurai), and Telangana rice-1289 (Regional Agricultural Research Station, Warangal), while wild introgression lines C10-21, NPK-56, and DRR Dhan 74 were obtained from the Indian Institute of Rice Research (IIRR), Hyderabad.

Controlled hybridization was performed during the *Kharif* season of 2024 at the experimental fields of ICAR-Indian Institute of Rice Research, Rajendranagar. Four distinct cross combinations were established through emasculation and hand pollination techniques: DBS-21 (ADT-51 × C10-21), DBS-23 (C10-21 × Telangana rice-1289), DBS-24 (DRR Dhan 74 × Swarna), and DBS-30

(Swarna \times NPK-56) and presented in Table 1. These crosses yielded a total of 20 F₁ plants distributed as follows: one plant from DBS-21, ten from DBS-23, six from DBS-24, and two from DBS-30. The resulting F₁s along with their respective parents were subsequently cultivated during the *Rabi* season of 2024-25.

DNA Extraction and Molecular Analysis

Genomic DNA was extracted from fresh leaf tissues of four-week-old F₁ plants and parental lines using the standard Cetyl Trimethyl Ammonium Bromide method as described by Doyle and Doyle *et al.*, 1987. Approximately 0.1 g of young, tender leaf material was ground using a mortar and pestle with CTAB extraction buffer containing 4% CTAB, 100 mM Tris-HCl, 20 mM EDTA, and 1.4 M NaCl. The extracted DNA was quantified and diluted to a working concentration of 50 ng/ìL in TE buffer for subsequent PCR analysis.

PCR Amplification and Electrophoresis

Molecular characterization was performed using ten microsatellite markers covering six rice chromosomes, with primer information retrieved from the Gramene database (www.gramene.org). PCR reactions were conducted in a 25 μ L volume containing 1X Taq buffer, 2 mM MgCl₂, 0.1 mM dNTP mix, 10 pM each of forward and reverse primers, 0.25 U Taq polymerase, and 50 ng/

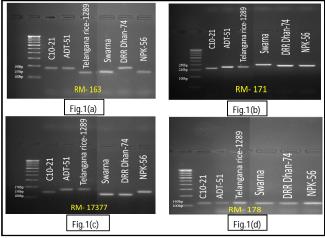


Fig. 1: Polymorphic survey among parental lines using SSR Markers. (a) RM163 showed polymorphism between C10-21 and Telangana rice -1289 (DBS23), Swarna showed polymorphism with DRR Dhan-74 (DBS24); (b) RM171 showed polymorphism between C10-21 and ADT-51(DBS-21) & C10-21 and Telanganarice-1289 (DBS-23) respectively, Swarna showed polymorphism with DRR Dhan-74 in cross DBS-24; (c) RM17377 showed polymorphism of C10-21 with ADT-51 (DBS21) and Telanganrice-1289(DBS23), Swarna showed polymorphism with NPK-56 (DBS30); (d) RM178 showed monomorphic bands in all the parental lines.

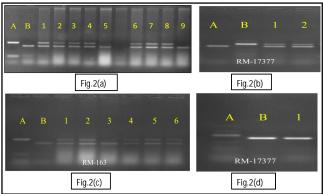
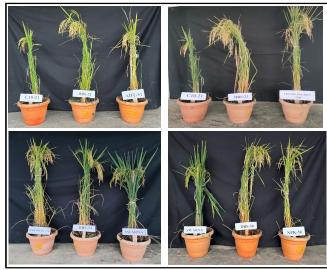

S.No	Marker	Sequence	Chr. No.
1.	RM163	F:CGCCTTTATGAGGAGGAGATGG; R:AAACTCTTCGACACGCCTTGC	5
2.	RM1	F:GCGAAAACACAATGCAAAAA; R:GCGTTGGTTGGACCTGAC	1
3.	RM9	F:GGCCCTCATCACCTTCGTAGC; R:CGTCCTCCCTCTCCCTATCTCC	1
4.	RM171	F:CGATCCATTCCTGCTGCTCGCG; R:CGCCCCCATGCATGAGAAGACG	10
5.	RM8004	F:TTGACCAAAGGTGATTGTAAT; R:CTTGATGAGTTTCATGAGCA	1
6.	RM312	F:GTATGCATATTTGATAAGAG; R:AAGTCACCGAGTTTACCTTC	1
7.	RM17377	F:ATATTACTTCGACGCTGGATCAGG; R:GTCAGTTCGTCAGGCACAACG	4
8.	RM3183	F:GCTCCACAGAAAAGCAAAGC; R:TGCAACAGTAGCTGTAGCCG	6
9.	RM552	F:CGCAGTTGTGGATTTCAGTG; R:TGCTCAACGTTTGACTGTCC	11
10.	RM178	F: TCGCGTGAAAGATAAGCGGCGC; R: GATCACCGTTCCCTCCGCCTGC	5

Table 2: Details of the microsatellite markers used in the present investigation.

iL template DNA. Amplification was performed using a Biorad thermal cycler with the following program: initial denaturation at 94°C for 7 minutes, followed by 35 cycles (94°C for 30 seconds), annealing (55°C, 30 seconds), and extension (72°C, 60 seconds), with a final extension step at 72°C for 10 minutes. The amplified products were separated on 2.5% agarose gels prepared in 1X TAE buffer and electrophoresed at 150 V for one hour. Visualization was achieved through ethidium bromide staining, and gel images were documented using a gel documentation system (Vilber- BIO-PRINT cx4 Edge-Fixed pad Container, France).


Results and Discussion

The crossing among the selected parents was accomplished with a future objective of developing high-yielding rice varieties with enhanced tolerance to abiotic and biotic stresses and improved climate resilience. A comprehensive molecular analysis was conducted using ten SSR markers distributed across different chromosomes. Four of the ten SSR markers (RM312, RM1, RM9 and RM8004) are from chromosome 1, and the two markers RM163, RM178 from chromosome 5

Fig. 2: Gel images of F_1 s Confirmation. (a) DBS23 Cross A=C10-21; B=Telangana rice-1289; 1, 2, 3, 4, 5, 6, 7, 8, 9 are true F_1 s; (b) DBS30 Cross A= Swarna; B= NPK-56; 1, 2 are true F_1 s; (c) DBS24 Cross A= DRR Dhan 74; B = Swarna; 1, 2, 3, 4, 5, 6 are true F_1 s; (d) DBS21 Cross A = ADT-51; B = C10-21; 1 is true F_1

and remaining five markers RM17377, RM3183, RM171, RM552 are from chromosomes 4, 6, 10 and 11 respectively. The markers demonstrating male and female parent-specific bands and which are showing clear polymorphism between them were utilized to assess the hybridity of the derived experimental F, hybrids. Parental polymorphism among parental lines using SSR Markers are illustrated in Fig. 1. Among the microsatellite markers used for parental polymorphism, RM8004, RM17377, RM163 and RM171 were found polymorphism in most of the crosses, while remaining six markers were found to be monomorphic. Of the polymorphic markers, RM8004 proved most informative, showing polymorphism in all four cross combinations, followed by RM17377 and RM163 exhibiting polymorphism in three crosses and two crosses respectively and marker RM171 was polymorphic in single cross. In contrast, the other markers RM312, RM3183, RM1, RM178 were monomorphic. The microsatellite profiles of the parental combinations and their experimental F₁s are illustrated in Fig. 2. In the F₁s of cross DBS-21, marker RM17377 revealed a malespecific allele at 150 bp, indicating successful inheritance

Fig. 3: Morphological Comparison of F₁ Hybrids with Parental Lines Across All Cross Combinations.

2460 P. Swetha *et al.*

of the male allele. In cross DBS-23, seven of the F₁ individuals displayed heterozygosity for marker RM163 (alleles at 155 bp and 190 bp), while two F₁s exhibited only the male-specific band. Similarly, F₁s from cross DBS-24 showed heterozygosity at RM163 (alleles at 150 bp and 170 bp) in five individuals, whereas one F₁ plant displayed only the male allele. In Cross DBS-30, heterozygosity for marker RM17377 (alleles at 155 bp and 190 bp) was observed in two F₁s.

The presence of alleles from both parental lines in the F₁ microsatellite profiles confirmed heterozygosity at specific loci, thereby validating the hybridity of the F, plants. Similar findings have been reported in earlier studies on rice by (Manohara et al., 2020, Ranjitha et al., 2016, Gimhani et al., 2014, Tamilkumar et al., 2009, and Sundaram et al., 2007). Furthermore, SSR markers have proven effective for hybridity testing in other crops such as pigeon pea (Bohra et al., 2015), maize (Sudharani et al., 2014), sunflower (Pallavi et al., 2011), and lentils (Solanki et al., 2010). After confirming the hybrid plants using molecular techniques, the F₁ plants were also checked morphologically to verify they were true hybrids. The visual observations showed that the F₁ plants displayed similarities with both parent plants, exhibiting intermediate traits that indicated successful crossbreeding as showed in Fig. 3. The morphological features of the F₁ plants, particularly their plant height, tillers and panicles provided additional evidence supporting their hybrid status. This combination of molecular and morphological confirmation methods ensured that the F plants were true hybrids rather than self-pollinated offspring from either parent variety.

In conclusion, this study underscores the effectiveness of microsatellite markers for rapid and precise detection of hybridity in experimental F_1 rice lines. This approach helps eliminate selection of selfed plants for advancement, thereby reducing the risk of segregation distortion in the succeeding generations. Notably, markers such as RM8004 and RM17377, which demonstrated high polymorphism across multiple crosses, show strong potential for future use in hybridity assessments, thereby minimizing the need for screening new random markers. The true F_1 s were further selfed and were further advanced as F_2 population and raised during *Kharif* 2025 for the development mapping populations and climate resilient rice varieties.

Acknowledgement

This research was carried out as a part of the MSc research work entitled "Molecular and morphological characterization of wild introgression lines derived from advanced intercross populations for yield traits in rice [*Oryza sativa* L.]" of the first author. This research was supported from project funding of SERB POWER project SPG/2021/000317 to corresponding author. First author acknowledges ICAR-IIRR and PJTAU for providing all the necessary facilities for the research work.

Competing Interests: Authors have declared that no competing interests exist.

Authors' Contributions: This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

References

- Bohra, A., Singh I.P., Yadav A.K., Pathak A., Soren K.R., Chaturvedi S.K. and Nadarajan N. (2015). Utility of informative SSR markers in the molecular characterization of cytoplasmic genetic male sterility-based hybrid and its parents in pigeonpea. *National Academy Science Letters*, **38(1)**,13-19.
- Doyle, J.J. (1990). Isolation of plant DNA from fresh tissue. *Focus*, **12**, 13-15.
- FAO (2009). OECD-FAO Agricultural Outlook 2009-2018.
- Gimhani, D.R., Kottearachchi N.S. and Samarasinghe W.L. (2014). Microsatellite marker-based hybridity assessment for salinity tolerance in rice. *Journal of Agricultural Science*, **9(2)**, 96-100. https://doi.org/10.4038/jas.v9i2.6914.
- Khush, G.S., Ling K.C., Aquino R.C. and Aguiero V.M. (1977). Breeding for resistance to grassy stunt in rice, (1977), 3-9.
- Manohara, K.K., Morajkar S., Shanbagh Y., Phadte P. and Patil K. (2020). Hybridity Assessment in Experimental F1s of Rice (*Oryza sativa* L.) using Microsatellite Markers. *National Academy Science Letters*, **43(2)**, 133-136.
- Mason, A.S. (2015). SSR Genotyping. In: Batley J, ed. Plant Genotyping. *Springer*; New York, NY, 77-89.
- Pallavi, H.M., Gowda R., Shadakshari Y.G., Bhanuprakash K. and Vishwanath K. (2011). Identification of SSR markers for hybridity and seed genetic purity testing in sunflower (*Helianthus annuus* L.). *Helia*, **34(54)**, 59-66.
- Pranay, G., Tomar N., Balakrishnan D., Nair S., Joshi P., Lv S., Sarla N., Saiprasad S. and Sundaram R. (2024). Assessment of Parental Polymorphism between Swarna/Oryza rufipogon IC309814 Derived Mapping Population. *Journal of Advances in Biology & Biotechnology*, **27(12)**, 358-367.
- Ranjitha, H.P., Gowda R., Nethra N., Shashidhar H.E. and Rajanna M.P.B.P. (2016). A rapid protocol for isolation of DNA from Paddy seed and hybrid purity confirmation. *International Journal of Current Advanced Research*, **5(10)**, 1301-1303.
- Solanki, R.K., Singh S. and Kumar J. (2010). Molecular marker assisted testing of hybridity of F1 plants in lentil. *Journal of Food Legumes*, **23(1)**, 21-24.

- Sudharani, M., Rao P.S. and SubbaRao L.V. (2014). Identification of SSR markers for testing of hybridity and seed genetic purity in maize. *International Journal of Science and Research*, **3(10)**, 92-95.
- Sundaram, R.M., Naveenkumar B., Biradar S.K., Balachandran S.M., Mishra B., IlyasAhmed M., Viraktamath B.C., Ramesha M.S. and Sarma N.P. (2008). Identification of informative SSR markers capable of distinguishing hybrid rice parental lines and their utilization in seed purity assessment. *Euphytica*, **163(2)**, 215-224.
- Tamilkumar, P., Jerlin R., Senthil N., Ganesan K.N., Jeevan R.J. and Raveendran M. (2009). Fingerprinting of rice hybrids and their parental lines using microsatellite markers and their utilization in genetic purity assessment of hybrid rice. *Research Journal of Seed Science* 3, 40-47. https://doi.org/10.3923/rjss.2009.40.47
- Tanksley, S.D. and McCouch S.R. (1997). Seed banks and molecular maps: unlocking genetic potential from wild. *Science*, **277**(**5329**), 1063-1066.